
Security Analysis of Smart connected Cameras:
Case Study on the Eufy Doorbell

Kushal Goenka
University of Illinois at Urbana-Champaign

Champaign, IL
kgoenka2@illinois.edu

Kevyn Cheng
University of Illinois at Urbana-Champaign

Urbana, IL
kkcheng2@illinois.edu

Abstract—In this project we aim to determine if and when
manufacturers patch their IoT devices when vulnerabilities
for similar products are discovered. To approach this on a
small scale, we will attempt to examine and potentially expose
vulnerabilities in either the Device, Mobile Application, Cloud
Endpoints, or the Network Communication of the smart-home
security system which incorporates smart doorbell cameras from
Eufy. Our threat model will look at three types of attackers, an
Off-Path Attacker who can exploit vulnerabilities in the mobile
application or the cloud endpoints, an On-Path attacker who
is already on the user’s local network, or an attacker who is
geographically close to the victim but not on the actual network
[1].

To streamline our approach, we will first examine inter-
company vulnerabilities which exist, from vulnerabilities found
in other similar/competing products such as the Ring Doorbell
camera, or similar smart home devices such as the Nest indoor
security cameras. We believe that this will provide a good
framework to look at existing vulnerabilities, and if they have
indeed been patched by these manufacturers. We will look at
the Common Vulnerabilities and Exposures (CVE’s) list, which
provides a list of publicly disclosed vulnerabilities and exposures.
An example of the same is CVE-2019-9483 which allowed
attackers to obtain video and audio data, or insert spoofed video
that did not correspond to the actual person at the door [2].

Index Terms—IoT, CVE, vulnerabilities, threat model, smart
doorbell, Eufy

I. INTRODUCTION

Taking a look at the current overall system, it becomes clear
that there are a range of potential attack surfaces which can be
exploited by attackers. One version of the device, the battery
powered doorbell camera works by first detecting an individual
in front of the camera. This is done via a touted on device
AI mechanism which prevents the data from being sent to any
servers for processing. The device then communicates with the
Homebase via WiFi (2.4 Ghz band), which is able to store the
data on the device, store it in the cloud if a subscription service
has been opted into, or stream the data after a certain delay
to a mobile application. The Homebase is connected to the
network via an Ethernet cable, and although unclear, looking
into the documentation reveals that there could also be some
amount of interaction, between the Homebase and Doorbell
camera, happening over Bluetooth to prolong battery.

The setup process is straightforward with the homebase
pairing with the camera via a “chime” that is played. The
camera is said to have about 180 day charge, with 10 minutes

of usage everyday on average, or may be connected to existing
doorbell wiring for an always powered device.

In this paper, we specifically look at this company, along
with this specific type of IoT device as we believe it has a large
attack surface and presents many other security vulnerabilities
for the entire home security ecosystem. Doorbells are the first
line of defense against intruders and burglars and provide
a compelling reason for many to find and exploit security
vulnerabilities in them. They can act as a deterrent to potential
crimes, and hence need to be as secure as possible. With
the increase in popularity of these home security systems,
we have seen greater communication between devices where
doorbell cameras are connected to a smart-lock to remotely
allow access for guests and authorized users. Amazon, along
with its Ring security systems has introduced ”Amazon Key”,
a service to allow delivery drivers to deliver packages inside
the home, rather than on porches where they might be stolen.
Since such a device is generally placed outside the home,
its easier for an attacker geographically close to the victim
to eavesdrop, pretend to be a Man in the Middle (MITM),
or sniff on packets. This happens because a poorly secured
WiFi network could allow attackers to be on path and inject
traffic such as spoofed packets and deauthentication packets,
and a poorly secured router could then allow the attacker to
become a MITM attacker. Vulnerabilities in these devices can
then compromise the entire home security ecosystem and any
form of data transmission from a previously secured internal
network can be exposed.

Furthermore, we decided to place our efforts into vulnera-
bilities in the Eufy Doorbell camera for two main reasons. In
literature we failed to find any references to Eufy’s smart home
devices. This could be a factor of either their devices being
extremely secure, or a lack of research having been conducted
to find exploits. Through this paper we hope to at least present
a baseline for which attacks this security system is resilient
against. Secondly, Eufy is a new competitor to established
firms such as Nest, Ring, Arlo and August.

II. BACKGROUND

This project intends to target consumer-grade IoT devices,
particularly Cameras and Doorbell cameras that have become
increasingly popular. Touted as home security devices, there
have been many instances where these devices have been
found to have serious vulnerabilities as well. The market for
such doorbell cameras in 2020 is expected to be about $1.83
billion in the US alone [4]. Looking at various popular devices
on the market, we chose to take a deeper look into the wired,
as well as the battery powered Eufy Doorbell camera.

The world of the Internet of Things is quite expansive and
covers everything from edge devices to connectivity devices,
fog computing, data accumulation devices, application, and
processing [5]. For the purposes of this paper, we will only
be focused on edge devices that gather and send data. As
consumers purchase more and more “smart” IoT devices, they
are filling their home with devices that frequently focus more
on features and inter-connectivity over security. Examples of
such devices include smart TVs, appliances, lights, security
cameras, door locks, or smart home hubs like Amazon Alexa.
Because these devices typically are connected to the Internet,
the attack surface of a home network increases substantially,
and many of these devices cease to function properly if internet
access is blocked.

Risk factors include both loss of privacy, complicity in a
botnet, or safety concerns. For example, a baby monitor video
device can be compromised, and an attacker can monitor
the baby and speak to it. Many IoT devices are also not
patched by the manufacturer, and thus are susceptible to being
compromised and used in a botnet to be used in DDoS attacks.

III. RELATED WORKS

This paper’s background is based off several papers detail-
ing various attacks on IoT as well as CVEs covering known
vulnerabilities in IoT devices. The Spying on the Smart Home:
Privacy Attacks and Defenses on Encrypted IoT Traffic by
Reisman et al [7] details how even encrypted IoT traffic can
allow an attacker to learn sensitive information about users and
their home. The Mirai botnet and the IoT Zombie Armies by
G. Kambourakis et al presents an overview of the target rich
environment of IoT devices and a case study of a IoT botnet
[3]. Dolphin Attack: Inaudible Voice Commands by Zhang et
al covers inaudible, ultrasonic audio signals that are interpreted
by voice recognition controlled devices as valid commands.

A. Risk Factors and Related Works

• Privacy: With always on devices that can monitor aspects
of user life, through cameras, microphones, and other
sensors, privacy is at risk both from the service provider
and attackers [7]. For example, a camera that detects
motion might start transmitting footage, or a smart lock
can send an update message when it’s status is changed.
Even with devices that communicate over encrypted
channels, a network observer such as an ISP can infer
metadata and know that some action is happening. This
can allow an attacker to learn the movements of people
in their home as well as ease of physically breaking in.
Another example is sleep tracking devices. If data is not
transmitted securely, an attacker can gain very sensitive
data about a user’s home and also their health.

• Botnet: Many IoT devices are cheap, insecure devices
without consistent access to security updates. Manufac-
turers have little financial incentive to provide patches
even for known vulnerabilities and end users often do not
change the default username and password. In addition,
efficient network scanning and simple botnet behavior
make it easy to find vast amounts of vulnerable devices
that can run simple code. These factors allow malware
such as the original Mirai to easily compromise a few
hundred thousand devices to use as a DDoS botnet [3].
Mirai starts by scanning Telnet ports and attempting to
establish a connection with common credentials. Upon
successful connection, server sends a loader to deploy a
architecture-specific, malware binary that listens for com-
mands from the command and control server. With the
release of the Mirai’s source code, subsequent variations
continue to target IoT devices today.

• Physical safety: The Dolphin Attack has shown that
speech recognition software can be targeted by ultrasonic
frequencies that humans cannot hear, but is picked up
by the device [6]. This can be used to issue commands
to devices such as smart home bases to open doors, car
navigation systems to redirect the driver, and smartphone
assistants to make calls.

These attacks can be combined to pull off attacks on IoT
devices that give the attacker an extreme amount of flexibility.
For example, an attacker can compromise a device with a
speaker, such as the camera systems we are targeting, and
output a command to a smart home devices that would
unlock a smart lock on a door. Additionally, an attacker could
determine the location of a home’s occupants either through
traffic analysis or compromising an IoT device to carry out a
physical attack on the location.

B. Known CVEs

Given that we wish to first examine and test known
Common Vulnerabilities and Exposures on the device(s) in
question, we would like to enumerate some of those as these
are relevant and have a high risk of being discovered and
exploited in other similar devices as well.

• CVE-2019-9483: Amazon Ring Doorbell before 3.4.7
mishandles encryption, which allows attackers to obtain
audio and video data, or insert spoofed video that does
not correspond to the actual person at the door [8].

• CVE-2019-3984: Blink XT2 Sync Module firmware prior
to 2.13.11 allows remote attackers to execute arbitrary
commands on the device due to improperly sanitized
input when the device retrieves updates scripts from the
internet [9].

• CVE-2019-3950: Arlo Basestation firmware
1.12.0.1 27940 and prior contain a hard coded username
and password combination that allows root access to the
device when an onboard serial interface is connected to
[10].

• CVE-2019-3949: Arlo Basestation firmware
1.12.0.1 27940 and prior firmware contain a networking
misconfiguration that allows access to restricted network
interfaces. This could allow an attacker to upload or
download arbitrary files and possibly execute malicious
code on the device [11].

• CVE-2019-5043: An exploitable denial-of-service vulner-
ability exists in the Weave daemon of the Nest Cam
IQ Indoor, version 4620002. A set of TCP connections
can cause unrestricted resource allocation, resulting in a
denial of service. An attacker can connect multiple times
to trigger this vulnerability [12].

• CVE-2019-3988: Blink XT2 Sync Module firmware prior
to 2.13.11 allows remote attackers to execute arbitrary
commands on the device due to improperly sanitized
input when configuring the devices WiFi configuration
via the BSSID parameter [13].

• CVE-2015-4400: Ring (formerly DoorBot) video door-
bells allow remote attackers to obtain sensitive informa-
tion about the wireless network configuration by pressing
the set up button and leveraging an API in the GainSpan
Wi-Fi module [14].

In addition to this, we found references to more vulnerabil-
ities. These were found in news articles and other disclosures
and were not attributed to any particular CVE.

• March 2017: Ring doorbell sent packets of Audio data to
servers in China [15].

• May 2018: Ring app doesn’t immediately revoke access
when an account password changes [16].

• Nov 2019: On setup, the Ring Doorbell sent a user’s
WiFi password in plaintext to the device, along with a
vulnerability forcing a user to reset the device [17].

• August 2020: August 2020 - Eufy T8200 video doorbell,
exposed account information, such as email addresses and
WiFi passwords [18].

IV. EXPERIMENTAL SETUP

We experimented on both the Eufy Wired Doorbell camera
and the Eufy Wireless Video Doorbell. The wired camera is
always on, and does not have a base station. It does have a
standalone chime that didn’t seem to function properly, and
is not required for the operation of the doorbell. It can accept

either 16-24 volt of AC power at 0.3A or 19V at about .6A
although it usually uses a lot less amperage. It has two screws
in the back, where you are supposed to wind AC power cables
around. For this experiment, we simply clipped alligator clips
on the screws and secured it with tape. It features both wifi and
bluetooth connectivity. The bluetooth is used to send control
messages from the phone app to choose the wifi network to
connect to and to reboot the device. All other messages appear
to go through WiFi. In order to capture packets accurately
using Wireshark, we connected the doorbell to a hotspot hosted
on a Dell Precision 5510 running Linux Mint.

To conduct our experiments on the Wireless Doorbell Cam-
era, our hardware consisted of a Wireless network card, TL-
WDN3200. We further used Wireshark to capture and analyze
TCP/UDP packets and DNS Queries. We used multiple operat-
ing systems including Linux Mint OS, Ubuntu 14.04, and Kali
Linux. Furthermore, we also leveraged tools such as aircrack-
ng, Nessus, nmap and binwalk.

The model number of the Battery Powered Doorbell is
T8210, running the latest System Version 2.2.2.1. The base sta-
tion was the Homebase 2, running a System Version 2.1.3.3h
and Subsystem version 1.3.0.9.

The model number of the Wired version is T8201, running
the latest system version 2.328.This version was published
on 11/28/2020, which shows that the manufacturer has been
issuing system updates, which is a very good sign.

V. EXPERIMENTS CONDUCTED

A. Port Scan

We know from prior vulnerabilities and general network
security principles that having open ports can result in vul-
nerabilities in devices that can be exploited. There has been
some research to show that more the number of open ports on
a networked device, there is a greater chance that it will be
susceptible to attacks. We conducted preliminary port scans via
nmap to determine which ports on the Eufy doorbell devices

were open. Looking at other devices such as smart switches,
smart speakers, streaming devices, we had noticed that as a
general rule of thumb, the ports were either closed or filtered.

On the Wired Doorbell, we saw that all ports appeared to be
closed and this is a good sign that the Eufy is taking proactive
steps to prevent any possible adversarial attacks as a result of
open ports on the network.

However, when analyzing the ports on the Wireless Door-
bell, we noticed that given the additional functionality built
into the device, there were open ports, as seen in Table 1. The
ports that were open are Port 53, 554, 5000, and 9000, with
port 80 being filtered.

One point of concern was that port 554, reserved for RTSP
is open when the feature isn’t available on the Eufy doorbells.
Exploring

B. Traffic Analysis

First, we started Wireshark, and then plugged the power into
the wired doorbell in order to capture all of its packets sent and
received. The first interesting event that happens after DHCP
is a DNS request for time.nist.gov, and then gets the time from
using the NTP protocol. Afterwards, it makes connections
to 54.153.101.7, 18.223.127.200, 34.235.4.153 which are all
amazon ec2 domains and gets the same response from each.
F10100100002143a74f9b18c0000000000000000. We assume
this value is a status message that the doorbell is able to
interpret. Unfortunately, the human readable value is just blank
characters with a t, so we are not able to find meaningful
information here.

A reverse DNS lookup yields the CNAMEs: ec2-54-
153-101-7.us-west-1.compute.amazonaws.com, ec2-18-223-
127-200.us-east-2.compute.amazonaws.com, and ec2-34-
235-4-153.compute-1.amazonaws.com. Visiting any of these
addresses displays the landing page for OpenResty, which is
a web platform based on nginx, that runs Lua scripts.Without
probing the EC2 instances, this is as far as we are exploring
this angle.

It then makes a DNS query for security-app.eufylife.com,
which redirects to 3.17.100.74, another amazon ec2 domain.
Ec2-3-17-100-74.us-east-2.compute.amazonaws.com. This the
server it establishes a connection with. It will continue to make
this DNS query and connect to other amazon ec2 instances.
Visiting this site takes us to a nginx landing page, which only
tells us that this is probably a webserver.

When you have the Eufy app open on your phone, the
doorbell camera will send short packets to both your phone
and your public IP address, which isn’t helpful in tracking
where the packet is going because the NAT is sending it to the
real destination. The length of the payload is 24 bytes, When
video is streaming, the packets are length 1032, so it’s obvious
when video is being transmitted. The packets are being sent to
your phone’s IP address, so that is quite straightforward. On
a static image, the packets all have different payloads, which
suggests a block cipher using IVs, like AES-CBC. The header
is consistent: f4 8c 50 05 74 81 8c 85 80 3d 38 58 08 00, so
perhaps it can be used to identify what type of encoding?

The main conclusion to be drawn from this traffic analysis
is that nothing appears to be sent over plaintext, which was an
issue found in a previous CVE. None of the packets sent by the
doorbell were in plaintext, and the video stream packets were
not in a format where the video was recoverable in wireshark.
Focusing on the app login, the app initiates a TCP connection
to an amazon ec2 instance, and establishes a TLS connection.
Further traffic is encrypted, so it does not appear that the app

sends any login messages through plain text.

C. Deauthentication

Since the Eufy Doorbell and Homebase system does not use
the Weave Daemon, we decided to try a different approach
where we sent de-authentication packets to the HomeBase
using aircrack-ng. This attack vector does not need an attacker
to have access to the internal NAT that the security system is
on and is susceptible to an attacker who is in close proximity
or one that has a suitable range on their wireless card. Another
pre-requisite to conduct such an attack was that the wireless
card had to allow monitor mode.

We saw that almost immediately after sending deauth pack-
ets, after about 100 such packets, the Eufy Security App
on the phone was unable to connect to the Video footage
from the camera. Previously, if the camera were to detect
a moving object, or a human in its field of view, it sent a
notification to the phone notifying the user that there was
activity detected, along with a use configurable short length
clip of the event. We saw that our deauthentication attack led
to no such notifications. Further, when attempting to access
the live video on the camera, we saw multiple error messages
such as P2P Connection failure and “Unable to connect to
video doorbell and asked us to retry.

This connection error continued as long as the deauth
packets were being sent to the HomeBase. This been said,
after connection was restored, we saw notifications on the app,
along with a recording of the entire event. We hypothesize that
since the connection between the Homebase and the Doorbell
camera is via Low-Power Bluetooth, on detecting activity, the
camera is able to send information to the local storage of the
base unit which stores the data and notifications and buffers the
same until its able to send it to the victim of the attack. With
enough deauthentication packets, we believe that we reach a
limit to an internal buffer and hence it takes approximately a
minute for the video connection to get restored. Although real
time notifications are hampered, we think it’s a good feature
that the HomeBase is able to send notifications after internet
connectivity is restored.

An improvement to this implementation could be to send the
user notifications if the HomeBase loses internet connectivity.
Since the HomeBase unit is powered through a wall outlet, it
would be reasonable to send periodic acks to Eufy Servers to
ensure that there is connectivity with the security system, and
if within a specific timeout there is no such response, send a
notification to the user, notifying them of the issue. This would
be helpful if the victim is not at home and would need to be
notified of such activity, and connectivity issues to keep them
informed. Another interesting approach that leads to a similar

issues as deauthentication packets was when we Spoofed the
local IP address and Mac Address of the Homebase connected
to the router. Looking at packet captures on Wireshark we
noticed that the our spoofed network interface card was
receiving packets from Eufy Servers hoping to request for
locally stored video footage. We hypothesize that packets are
originally meant for the HomeBase are accidentally sent to our
spoofed attacker, and consequently the packets are dropped
and the HomeBase is never able to successfully send the data
to the user’s phone via the Eufy Servers.

D. Serial Connection Vulnerabilities:

We were able to successfully replicate CVE-2019-3950
where the Arlo Basestation firmware contained a hard coded
username and password combination that allowed root access
to the device when an onboard serial interface was connected
to it. We found that the default password was not randomized
and was simply Admin, with the username Admin as well.

Looking at the Homebase more closely, we noticed that it
had 4 ports available for Serial interfacing, these included the
Ground, Tx, Rx and 3.3v for power.

Since the firmware updates on the Homebase and both our
doorbell cameras were automatic and rare. As a result, we had
no control over the timeline, making it difficult to capture the
traffic to ascertain which servers these devices were getting
their firmware from, and if there were any potential security
concerns as prior CVE’s have indicated. A good method to
follow for further research could be to unplug the device until
there is a software update available, and continuously capture
packets from the device until the devices are updated. This
will allow us to further conduct deep packet analysis, and
determine information about the firmware such as where its
originating from, whether it’s encrypted, etc.

To get a deeper look at the firmware, we attempted to
reverse engineer the data on the device by accessing it via the
serial interface in recovery mode. We were able to obtain three
folders/files. The flash mtd0 partition which was about 32 MB
in size, and files and scripts in the etc/ and sbin/ directories.
Looking at the files in the etc and sbin folders, we didn’t
find anything interesting in them. However, there did exist a
etc/passwd file. This had the below line:

admin:rC0FditfQ9ix2:0:0:Adminstrator:/:/bin/sh
This prompted us to try and crack the hashed password, via

john the ripper, and a simple query revealed the password to
be admin.

The password, although encrypted, was too easy to crack,
and we believe that this is probably hardcoded for all Home-
Base units, which could lead to potential security vulnerabil-
ities.

In recovery mode, we noticed that the ethernet cable was
still live and had network access, allowing files to be sent via
tftp and telnet for further analysis and reverse engineering.

We found the mtd0 flash partition to be the most interesting
find via the serial interface, and its large size indicated that it
contained most of the information that we were after.

We used binwalk to access the structure of the files stored
in this partition and this revealed a JFFS2 partition, along with
compressed files, and a couple of linux partitions as well. We
attempted to reverse engineer this and extract the contents but
have since been unsuccessful at doing so. We’re still actively
working on the same, and hoping to learn more about the
device after extracting the contents in this flash partition.

To gain further insight about the contents, we used binwalk
to plot the entropy of the files in the device. Values very close
to 1 could indicate that the files are either compressed, or
encrypted. Below is a plot of the entropy graph of the mtd0
partition.

These sharp spikes seem to indicate that the contents are
mostly compressed files and this was confirmed via manual
inspection as well.

E. Comparing with Prior CVEs:
Our primary goal for our project was to determine if there

are cross-manufacturer vulnerabilities that exist and if they do,
how quickly are these discovered and patched. We first looked
at the manufacturer’s firmware update records of the Doorbell,
the Homebase as well as other products in its security lineup.
These update records didn’t explicitly mention any security
vulnerabilities that had been patched by the update, and were
not linked to any known CVE’s.

In our experience when attempting to replicate CVE’s and
determine if a device and associated software had similar
vulnerabilities to those from other manufacturers, we noticed
that those vulnerabilities were very specific to the device
and its infrastructure in question. This made it very difficult
to accurately reproduce the same conditions and especially
because the Eufy devices didn’t use certain protocols as those
used by Ring, Nest, etc.

Furthermore, another issue we discovered was that known
exposure notices are very brief, and don’t necessarily go into
the details of what the vulnerability was, and definitely do not
provide additional information about how previous researchers
went about discovering the vulnerability. In most cases CVEs
directed us to broken links to the formal reports published
by the researchers, increasing the difficulty. We attempted to
reverse engineer the vulnerabilities as much as possible and
where we were unable to, we took the general idea of attack
and attempted to craft it for our device and manufacturer.

F. Exploring Denial of Service Attacks:
Since the Eufy Doorbell and Homebase system does not use

the Weave Daemon, we decided to try a different approach

where we sent de-authentication packets to the HomeBase
using aircrack-ng. This attack vector does not need an attacker
to have access to the internal NAT that the security system is
on and is susceptible to an attacker who is in close proximity
or one that has a suitable range on their wireless card. Another
pre-requisite to conduct such an attack was that the wireless
card had to allow monitor mode.

We saw that almost immediately after sending deauth pack-
ets, after about 100 such packets, the Eufy Security App
on the phone was unable to connect to the Video footage
from the camera. Previously, if the camera were to detect
a moving object, or a human in its field of view, it sent a
notification to the phone notifying the user that there was
activity detected, along with a use configurable short length
clip of the event. We saw that our deauthentication attack led
to no such notifications. Further, when attempting to access
the live video on the camera, we saw multiple error messages
such as P2P Connection failure and “Unable to connect to
video doorbell and asked us to retry.

This connection error continued as long as the deauth
packets were being sent to the HomeBase. This been said,
after connection was restored, we saw notifications on the app,
along with a recording of the entire event. We hypothesize that
since the connection between the Homebase and the Doorbell
camera is via Low-Power Bluetooth, on detecting activity, the
camera is able to send information to the local storage of the
base unit which stores the data and notifications and buffers the
same until its able to send it to the victim of the attack. With
enough deauthentication packets, we believe that we reach a
limit to an internal buffer and hence it takes approximately a
minute for the video connection to get restored. Although real
time notifications are hampered, we think it’s a good feature
that the HomeBase is able to send notifications after internet
connectivity is restored.

An improvement to this implementation could be to send the
user notifications if the HomeBase loses internet connectivity.
Since the HomeBase unit is powered through a wall outlet, it
would be reasonable to send periodic acks to Eufy Servers to
ensure that there is connectivity with the security system, and
if within a specific timeout there is no such response, send a
notification to the user, notifying them of the issue. This would
be helpful if the victim is not at home and would need to be
notified of such activity, and connectivity issues to keep them
informed. Another interesting approach that leads to a similar
issues as deauthentication packets was when we Spoofed the
local IP address and Mac Address of the Homebase connected
to the router. Looking at packet captures on Wireshark we
noticed that the our spoofed network interface card was
receiving packets from Eufy Servers hoping to request for
locally stored video footage. We hypothesize that packets are
originally meant for the HomeBase are accidentally sent to our
spoofed attacker, and consequently the packets are dropped
and the HomeBase is never able to successfully send the data
to the user’s phone via the Eufy Servers.

G. Serial Connection Vulnerabilities:

We were able to successfully replicate CVE-2019-3950
where the Arlo Basestation firmware contained a hard coded
username and password combination that allowed root access
to the device when an onboard serial interface was connected
to it. We found that the default password was not randomized
and was simply Admin, with the username Admin as well.

Looking at the Homebase more closely, we noticed that it
had 4 ports available for Serial interfacing, these included the
Ground, Tx, Rx and 3.3v for power.

Since the firmware updates on the Homebase and both our
doorbell cameras were automatic and rare. As a result, we had
no control over the timeline, making it difficult to capture the
traffic to ascertain which servers these devices were getting
their firmware from, and if there were any potential security
concerns as prior CVE’s have indicated. A good method to
follow for further research could be to unplug the device until
there is a software update available, and continuously capture
packets from the device until the devices are updated. This
will allow us to further conduct deep packet analysis, and
determine information about the firmware such as where its
originating from, whether it’s encrypted, etc.

To get a deeper look at the firmware, we attempted to
reverse engineer the data on the device by accessing it via the
serial interface in recovery mode. We were able to obtain three
folders/files. The flash mtd0 partition which was about 32 MB
in size, and files and scripts in the etc/ and sbin/ directories.
Looking at the files in the etc and sbin folders, we didn’t
find anything interesting in them. However, there did exist a
etc/passwd file. This had the below line:

admin:rC0FditfQ9ix2:0:0:Adminstrator:/:/bin/sh
This prompted us to try and crack the hashed password, via

john the ripper, and a simple query revealed the password to
be admin.

The password, although encrypted, was too easy to crack,
and we believe that this is probably hardcoded for all Home-
Base units, which could lead to potential security vulnerabil-
ities.

In recovery mode, we noticed that the ethernet cable was
still live and had network access, allowing files to be sent via
tftp and telnet for further analysis and reverse engineering.

We found the mtd0 flash partition to be the most interesting
find via the serial interface, and its large size indicated that it
contained most of the information that we were after.

We used binwalk to access the structure of the files stored
in this partition and this revealed a JFFS2 partition, along with

compressed files, and a couple of linux partitions as well. We
attempted to reverse engineer this and extract the contents but
have since been unsuccessful at doing so. We’re still actively
working on the same, and hoping to learn more about the
device after extracting the contents in this flash partition.

To gain further insight about the contents, we used binwalk
to plot the entropy of the files in the device. Values very close
to 1 could indicate that the files are either compressed, or
encrypted. Below is a plot of the entropy graph of the mtd0
partition.

These sharp spikes seem to indicate that the contents are
mostly compressed files and this was confirmed via manual
inspection as well.

H. Man in the Middle Attack:

To make it easier to sniff on network packets, while we
did utilize an additional machine as a router which the
Doorbell Camera and/or BaseStation were connected to, this
was under the assumption that an adversary would be able
to successfully compromise the router’s integrity. For a more
realistic situation, we also tested the feasibility of capturing
packets, with the potential to analyze them later, with a Man
in the Middle Attack. We conducted this via ARP Poisoning,
and placing ourselves between the router and the HomeBase.
This allowed us to capture packets similar to how we were
able when the HomeBase was connected to a network that we
controlled.

We also placed ourselves between the phone on the network
and the router, and confirmed our hypothesis about the external
servers which the HomeBase sends video information to. We
saw the same IP addresses, and hostnames of the EC2 servers
as we did with the packets captured during the communication
with the HomeBase.

I. Privacy Concerns:

We found interesting analysis to the claims made by Eufy
touting the HomeBase+Doorbell Security system as being
secure, and privacy safe because the video is stored on your
local device and not on external servers. However, our packet
capture analysis tells us that the data is actually sent via Eufy
owned, Amazon’s EC2 servers when a user attempts to access

their live camera or stored camera footage. This might defeat
the purpose of local storage and could mislead users who were
made to believe that there is absolutely no external access
to their personal information and videos. This becomes even
more concerning when we talk about other camera devices on
the same network that are connected to the HomeBase.

J. CVEs which we were not able to reproduce:

CVE-2019-5043, refers to a DOS vulnerability that exists in
the Weave daemon of Nest Cameras. Weave is a protocol for
setup and initial communications with other Nest Devices over
TCP, UDP, Bluetooth and 6lowpan. Since the Eufy Camera
setup does not use this specific protocol, we were unable to
see if such a vulnerability exists in its cameras.

CVE-2019-9483, where researchers were able to obtain
audio and video data.

Amazon Ring Doorbell before 3.4.7 mishandles encryption,
which allows attackers to obtain audio and video data, or insert
spoofed video that does not correspond to the actual person
at the door

VI. RESULTS

VII. FUTURE WORK AND IMPROVEMENTS

The largest next step would be to conduct these experiments
across a much larger range of devices and manufacturers,
because our goal is to determine

With more time, expertise, and equipment, we would con-
sider launching active man in the middle attacks to try to
replay past packets. A previous CVE shows that sending past
video packets would trick the device into thinking someone
was at the door. We suspect that this attack would not succeed
because we know one of the first connections the doorbell
makes is to a time server to get the current time. This implies
that the current time is probably included in the video stream
packets, so the app and web server would know to discard
packets that are too old.

Another angle of attack we were not able to consider this
time was the Bluetooth connection between the phone app and
doorbell. The vulnerability we would be looking for is an older
version of Bluetooth being used that uses weaker encryption
standards. It is quite possible that the doorbell supports older
versions of Bluetooth to maintain compatibility with older
smartphones, so we could potentially launch a downgrade
attack.

In the future, we would also try to explore the Android
App apk and extract the contents to analyze it. In particular,
we would want to run it in a debugger, to try to analyze the
cryptographic libraries being called and what video encoding
is being used so we have a better chance of deciphering
the video stream and determine if they are following safe
practices.

Get extra phones without other background apps so when
we try to analyze traffic, there isn’t a lot of other packets to
sort through. Purchase better WiFi sniffers, like wifi pineapple,
and setup a computer without background processes that are
sending traffic.

REFERENCES

Below are the references for our work above.

REFERENCES

[1] https://yourthings.info/method/
[2] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9483
[3] G. Kambourakis, C. Kolias and A. Stavrou, ”The Mirai botnet and the

IoT Zombie Armies,” MILCOM 2017 - 2017 IEEE Military Commu-
nications Conference (MILCOM), Baltimore, MD, 2017, pp. 267-272,
doi: 10.1109/MILCOM.2017.8170867.

[4] https://www.grandviewresearch.com/industry-analysis/doorbell-camera-
market

[5] Cisco: The Internet of Things Reference Model,
http://cdn.iotwf.com/resources/71/IoT Reference Model White Paper June 4 2014.pdf

[6] Zhang G., Yan c., Ji X., Zhang T., Zhang T., Xu W.DolphinAttack:
Inaudible Voice Commands. InProceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security(Dallas,TX,
USA, 2017). https://acmccs.github.io/papers/p103-zhangAemb.pdf

[7] Apthorpe N., Reisman D., Sundaresan S., Narayanan A., Feamster
N.Spying on the Smart Home:Privacy Attacks and Defenses on En-
crypted IoT Traffic. 2017. https://arxiv.org/pdf/1708.05044.pdf

[8] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9483
[9] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3984

[10] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3950
[11] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3949
[12] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5043
[13] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3988
[14] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4400
[15] https://www.forbes.com/sites/aarontilley/2017/03/22/this-smart-

doorbell-was-accidentally-sending-data-to-china-until-people-started-
freaking-out/6461d9075984

[16] https://www.theverge.com/circuitbreaker/2018/5/11/17345972/ ring-
smart-doorbell-password-change-revoke-app-permission-access

[17] https://www.bitdefender.com/files/News/CaseStudies/study/294/
Bitdefender-WhitePaper-RDoor-CREA3949-en-EN-GenericUse.pdf?
clickid=06U0VpxjrxyLWmnwUx0Mo3bwUkExpsw5sz6kyA0irgwc=1MPid=10078cid=aff

[18] https://www.consumerreports.org/video-doorbells/data-security-data-
privacy-gaps-found-in-video-doorbells/

[19] B. Marczak, J Scott-Railton https://citizenlab.ca/2020/04/move-fast-roll-
your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/

[20] https://shop.hak5.org/products/wifi-pineapple

